Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493814

RESUMEN

The rapid manufacturing of biocomposite scaffold made of saturated-Poly(ε-caprolactone) (PCL) and unsaturated Polyester (PE) blends with gelatin and modified gelatin (NCO-Gel) is demonstrated. Polyester blend-based scaffold are fabricated with and without applying potential in the melt electrowriting system. Notably, the applied potential induces phase separation between PCL and PE and drives the formation of PE rich spots at the interface of electrowritten fibers. The objective of the current study is to control the phase separation between saturated and unsaturated polyesters occurring in the melt electro-writing process and utilization of this phenomenon to improve efficiency of biofunctionalization at the interface of scaffold via Aza-Michael addition reaction. Electron-deficient triple bonds of PE spots on the fibers exhibit good potential for the biofunctionalization via the aza-Michael addition reaction. PE spots are found to be pronounced in which blend compositions are PCL-PE as 90:10 and 75:25 %. The biofunctionalization of scaffold is monitored through CN bond formation appeared at 400 eV via X-ray photoelectron spectroscopy (XPS) and XPS chemical mapping. The described biofunctionalization methodology suggest avoiding use of multi-step chemical modification on additive manufacturing products and thereby rapid prototyping of functional polymer blend based scaffolds with enhanced biocompatibility and preserved mechanical properties. Additionally one-step additive manufacturing method eliminates side effects of toxic solvents and long modification steps during scaffold fabrication.


Asunto(s)
Poliésteres , Polímeros , Poliésteres/química , Andamios del Tejido/química , Gelatina/química , Ingeniería de Tejidos/métodos
2.
ACS Omega ; 8(40): 37413-37420, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841123

RESUMEN

The study describes a simple yet robust methodology for forming gradients in polymer coatings with nanometer-thickness precision. The thickness gradients of 0-20 nm in the coating are obtained by a reactive layer-by-layer assembly of polyester and polyethylenimine on gold substrates. Three parameters are important in forming thickness gradients: (i) the incubation time, (ii) the incubation concentration of the polymer solutions, and (iii) the tilt angle of the gold substrate during the dipping process. After examining these parameters, the characterization of the anisotropic surface obtained under the best conditions is presented in the manuscript. The thickness profile and nanomechanical characterization of the polymer gradients are characterized by atomic force microscopy. The roughness analysis has demonstrated that the coating exhibited decreasing roughness with increasing thickness. On the other hand, Young's moduli of the thin and thick coatings are 0.50 and 1.4 MPa, respectively, which assured an increase in mechanical stability with increasing coating thickness. Angle-dependent infrared spectroscopy reveals that the C-O-C ester groups of the polyesters exhibit a perpendicular orientation to the surface, while the C≡C groups are parallel to the surface. The surface properties of the polymer gradients are explored by fluorescence microscopy, proving that the dye's fluorescence intensity increases as the coating thickness increases. The significant benefit of the suggested methodology is that it promises thickness control of gradients in the coating as a consequence of the fast reaction kinetics between layers and the reaction time.

3.
ACS Omega ; 7(27): 23332-23341, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847292

RESUMEN

Pressure from environmental nongovernmental organizations and the public has accelerated research on the development of innovative and renewable polymers and additives. Recently, biobased "green" plasticizers that can be covalently attached to replace toxic and migratory phthalate-based plasticizers have gained a lot of attention from researchers. In this work, we prepared an azide-functionalized soybean oil derivative (AzSBO) and investigated whether it can be used as a plasticizer. We covalently attached AzSBO to an electron-deficient triple-bond-containing polyester via a metal-free azide-alkyne click reaction. The thermal, mechanical, and solvent absorption behaviors of different amounts of azidated oil-containing polyesters were determined. Moreover, the plasticization efficiency of AzSBO was compared with the commercial plasticizers bis(2-ethylhexyl) phthalate and epoxidized soybean oil. At relatively lower AzSBO ratios, the degree of cross-linking was higher and thus the plasticization was less pronounced but the solvent resistance was significantly improved. As the ratio of AzSBO was increased, the glass transition temperature of the pristine polymer decreased up to 31 °C from 57 °C. Furthermore, the incorporation of AzSBO also improved the thermal properties and 20% AzSBO addition led to a 60 °C increase in the maximum weight loss temperature.

4.
Langmuir ; 37(37): 10902-10913, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34477388

RESUMEN

We here demonstrate the utilization of reactive layer-by-layer (rLBL) assembly to form a nanogel coating made of branched polyethylenimine (BPEI) and alkyne containing polyester (PE) on a gold surface. The rLBL is generated by the rapid aza-Michael addition reaction of the alkyne group of PE and the -NH2 groups of BPEI by yielding a homogeneous gel coating on the gold substrate. The thickness profile of the nanogel revealed that a 400 nm thick coating is formed by six multilayers of rLBL, and it exhibits 50 nm roughness over 8 µm distance. The LBL characteristics were determined via depth profiling analysis by X-ray photoelectron spectroscopy, and it has been shown that a 70-100 nm periodic increase in gel thickness is a consequence of consecutive cycles of rLBL. A detailed XPS analysis was performed to determine the yield of the rLBL reaction: the average yield was deduced as 86.4% by the ratio of the binding energies at 286.26 eV, (C═CN-C bond) and 283.33 eV, (C≡C triple bond). The electrochemical characterization of the nanogels ascertains that up to the six-multilayered rLBL of BPEI-PE is electroactive, and the nanogel permeability had led to drive mass and charge transfer effectively. These results promise that nanogel formation by rLBL films may be a straightforward modification of electrodes approach, and it exhibits potential for the application of soft biointerfaces.


Asunto(s)
Poliésteres , Polietileneimina , Nanogeles , Polietilenglicoles
5.
Macromol Rapid Commun ; 38(11)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28321953

RESUMEN

l-Ascorbic acid, commonly known as vitamin C and one of the most important biological compounds, is converted to a α,ω-diene monomer and subsequently polymerized for the first time by acyclic diene metathesis. Various experimental conditions such as polymerization medium, catalyst type, temperature, and monomer/catalyst ratio are studied. The moderate molecular weight polymers are achieved when the polymerizations are conducted under bulk conditions employing the Grubbs first generation (G1) or Hoveyda-Grubbs second generation catalyst (HG-2). In the solution case, on the other hand, low molecular weight polymers are obtained regardless of the catalyst type. Moreover, when the catalyst performances are compared, it is found that G1 produces the higher molecular weight as well as higher yield polymers with respect to the HG-2.


Asunto(s)
Ácido Ascórbico/biosíntesis , Catálisis , Polimerizacion , Polímeros/química
7.
J Drug Target ; 23(7-8): 750-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26453170

RESUMEN

BACKGROUND: Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. PURPOSE: Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. METHODS: EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. RESULTS AND DISCUSSION: Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. CONCLUSION: EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polietilenglicoles/química , Polímeros/química , Animales , Anisotropía , Preparaciones de Acción Retardada , Dispersión Dinámica de Luz , Hidrodinámica , Radioisótopos de Yodo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Tecnología Farmacéutica/métodos , Factores de Tiempo , Distribución Tisular
8.
Biomacromolecules ; 16(8): 2412-7, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26154069

RESUMEN

CXCR4 is a cell membrane receptor that is overexpressed in triple-negative breast cancers and implicated in growth and metastasis of this disease. Using electrohydrodynamic cojetting, we prepared multicompartmental drug delivery carriers for CXCR4 targeting. The particles are comprised of a novel poly(lactide-co-glycolide) derivative that allows for straightforward immobilization of 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (Plerixafor), a small molecule with affinity for CXCR4. Targeted nanocarriers are selectively taken up by CXCR4-expressing cells and effectively block CXCR4 signaling. This study suggests that CXCR4 may be an effective target for nanocarrier-based therapies.


Asunto(s)
Compuestos Heterocíclicos/administración & dosificación , Nanopartículas/administración & dosificación , Receptores CXCR4/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Bencilaminas , Línea Celular Tumoral , Ciclamas , Sistemas de Liberación de Medicamentos , Femenino , Compuestos Heterocíclicos/química , Humanos , Neoplasias de la Mama Triple Negativas/patología
9.
Langmuir ; 31(18): 5123-9, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25869214

RESUMEN

We use chemical vapor deposition polymerization to prepare a novel dibromomaleimide-functionalized polymer for selective and reversible binding of thiol-containing biomolecules on a broad range of substrates. We report the synthesis and CVD polymerization of 4-(3,4-dibromomaleimide)[2.2]paracyclophane to yield nanometer thick polymer coatings. Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the chemical composition of the polymer coating. The reactivity of the polymer coating toward thiol-functionalized molecules was confirmed using fluorescent ligands. As a proof of concept, the binding and subsequent release of cysteine-modified peptides from the polymer coating were also demonstrated via sum frequency generation spectroscopy. This reactive polymer coating provides a flexible surface modification approach to selectively and reversibly bind biomolecules on a broad range of materials, which could open up new opportunities in many biomedical sensing and diagnostic applications where specific binding and release of target analytes are desired.


Asunto(s)
Polímeros/química , Fosfinas , Espectroscopía de Fotoelectrones , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier
10.
Angew Chem Int Ed Engl ; 53(9): 2332-8, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24574030

RESUMEN

Compared to two-dimensional substrates, only a few methodologies exist for the spatially controlled decoration of three-dimensional objects, such as microparticles. Combining electrohydrodynamic co-jetting with synthetic polymer chemistry, we were able to create two- and three-patch microparticles displaying chemically orthogonal anchor groups on three distinct surface patches of the same particle. This approach takes advantage of a combination of novel chemically orthogonal polylactide-based polymers and their processing by electrohydrodynamic co-jetting to yield unprecedented multifunctional microparticles. Several micropatterned particles were fabricated displaying orthogonal click functionalities. Specifically, we demonstrate novel two- and three-patch particles. Multi-patch particles are highly sought after for their potential to present multiple distinct ligands in a directional manner. This work clearly establishes a viable route towards orthogonal reaction strategies on multivalent micropatterned particles.


Asunto(s)
Poliésteres/química , Química Clic/métodos , Microesferas , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA